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This paper addresses the question of how to cool a stack of parallel, heat-generating 
boards when the f low is impeded by electromagnetic screens placed upstream and 
downstream of the stack. Four separate designs are considered: (1) forced convection 
cooling of a stack with board-to-board spacing selected to minimize the stack-coolant 
thermal resistance; (2) forced convection cooling of stack with fixed board-to-board 
spacing; (3) natural convection cooling of a vertical stack with spacing selected to 
minimize the overall thermal resistance; and (4) natural convection cooling of a vertical 
stack with fixed spacing. The optimal spacings in designs (1) and (3) are determined by 
intersecting the known asymptotic solutions for stacks with small spacings and stacks 
with large spacings. The results of parts (1) and (2) are extended to applications where the 
stack is cooled by immersion in a free stream. We show that the effect of the screen is 
controlled by a single dimensionless group, which is identified for each class of designs; 
namely, forced versus natural convection, and high- versus low-screen Reynolds number. 
Engineering results are reported for the design of screens made of wire meshes, or 
perforated plate with square (sharp) edges. 
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Introduction 

Microelectronics packaging is subject to several conflicting 
requirements, such as electromagnetic compatibility, acoustic 
limits, and adequate cooling. Electronic systems and compo- 
nents are often enclosed completely inside conducting cases to 
minimize radio frequency interference or electromagnetic 
interference, or for protection against airborne particles 
(Steinberg 1980). These enclosures have the added benefit that 
they reduce the sound pressure level associated with acoustic 
noise generation. 

There are numerous applications where the thermal design 
rules out use of a complete enclosure around the electronic 
package. Openings must be provided in the enclosure because 
the cooling requirement of an enclosed packages is greater and 
the need to ventilate the electronic components becomes 
critical. This conflict between the need to enclose and the need 
to cool poses a significant design challenge as the power density 
of electronics is increased. 

Address reprint requests to Professor Bejan at the Department of 
Mechanical Engineering and Materials Science, Duke University, 
Box 90300, Durham, NC 27708-0300, USA. 

Received 8 March 1994; accepted 25 August 1994. 

A design rule for the enclosures of commercial products calls 
for apertures whose linear dimensions should not exceed 1/20th 
of the source wavelength (Ott, 1988). Furthermore, when 
apertures of equal size are placed close to one another, the 
reduction in shielding effectiveness is approximately propor- 
tional to the square root of the number of apertures. From a 
cooling standpoint, however, it is advantageous to increase the 
number and size of the apertures to reduce the enclosure 
resistance to air flow. The questions that follow are: How many 
apertures should be used?; and What should be the aperture 
size so that the overall design meets the electromagnetic 
compatibility, acoustic, and thermal specifications? 

The importance of the optimal selection of openings for air 
cooling has been recognized in the design of stacks of parallel 
printed circuit boards. The stack with vertical boards cooled 
by natural convection has been optimized by Anand et al. 
(1990, 1992), Bar-Cohen and Rohsenow (1984), Elenbaas (1942), 
Kim et al. (1991) and Levy (1971). The forced convection 
cooling of stacks of parallel boards was optimized by Bejan 
(1993), Bejan and Sciubba (1992), Hirata et al. (1970), 
Matsushima et al. (1992) and Nakayama et al. (1988). For both 
cooling modes, the board-to-board spacing was selected so that 
the total heat transfer from the stack (or the heat generation 
rate per unit stack volume) is maximized. In all these studies, 
the stacks were immersed in the coolant; i.e., they were not 
placed inside enclosures. 
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The objective of the present work is to optimize the thermal 
performance of stacks of parallel boards that are surrounded 
by permeable (perforated) screens. The study is structured as a 
sequence of four distinct problems, according to the cooling 
mode (forced convection vs. natural convection), and whether 
the board-to-board spacing is fixed or constitutes a degree of 
freedom in the design. In every case, we seek to establish the 
relation between the characteristics of the perforated screens 
(e.g., porosity) and the ,overall thermal conductance between 
the stack and the coolant. 

2. Forced  c o n v e c t i o n :  la rge  screen  R e y n o l d s  
n u m b e r s  

Consider the L x H stack of heat-generating parallel plates 
(e.g., printed circuit boards) shown in Figure 1. It is assumed 
that the stack dimension perpendicular to the figure is 
sufficiently greater than the plate-to-plate spacing D so that the 
flow through each channel is two-dimensional (2-D). Two 
electromagnetic screens (e.g., perforated plates) are placed 
immediately upstream and downstream of the stack. The 
coolant (e.g., air) is forced to flow through the entire assembly 
by the pressure difference AP, which is fixed. The flow through 
the spaces between the parallel plates is laminar. 

2.1 Op t ima /p la te - to -p la te  spacing 

The first problem we address is how to select the number of 
plates in the stack (or the spacing D) so that the overall thermal 
conductance between the stack to the coolant is maximum. The 
method of solution will be the same as in Bejan (1993), in which 
the stack without inlet .and outlet screens was optimized by 
identifying the two asymptotic regimes (small D, large D) and 
intersecting the two asymptotes. It was shown that the optimal 
spacing determined in this manner agrees within 20 percent 
with considerably more accurate optimization results based on 
an entrance-region analysis of each channel (Bejan and Sciubba 
1992), or on numerical simulations of the entire package 
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Figure 1 Forced convection cool ing of a stack of parallel plates 
with inlet and outlet screens 

(Morega, and Bejan 1994). The reliability and accuracy of the 
method are discussed further in Section 6. 

To be able to highlight analytically the effect of the inlet and 
outlet screens, we treat the plate thickness t as negligible 
relative to the spacing D. Accordingly, we write that the number 
of plates installed in the stack is as follows: 

n = n / o  (1) 

where n is assumed considerably greater than 1. It has been 
shown that the optimal spacing derived in this manner for the 
stack without screens is correct even when the t<< D 
assumption is not valid (Mereu et al. 1993). 

We begin with the D --, 0 asymptotic regime, where the flow 
through each D channel is of the Hagen-Poiseuille type. The 
pressure drop across the stack, from the plane situated behind 
the inlet screen to the plane in front of the outlet screen, is as 
follows: 

AP, = 12/z LU/D 2 (2) 

where U is the longitudinal velocity averaged over the D 
spacing. The total pressure difference maintained across the 
entire assembly is as follows (Ellison, 1984): 

AP = AP t + 2 Kc (1/2)p V 2 (3) 

N o t a t i o n  

ce specific heat at constant pressure, J/kg K 
d wire diameter, m 
D plate-to-plate spacing, m 
D,,pt optimal spacing, m 
g gravitational acceleration, m/s 2 
k stack thickness in Figure 1; stack height in Figure 

6, m 
R fluid thermal conductivity W/mk 
K c screen pressure loss coefficient 
L stack length in Fig. 1; stack thickness in Fig. 6, m 
rh' mass flow rate, kg/s .m 
n number of plalEes 
p parameter, Equation 14 
p .  parameter, Equation 34 
Pr Prandtl number 
q' total heat transfer rate, W/m 
q~ heat transfer through one side, W/m 
Ra x Rayleigh number, Equation 33 
Re d screen Reynolds number, U~ d/v 
Re L Reynolds number, U = L/v  
t plate thickness, m 
T~ core temperature, K 
Tw plate temperature, K 

T~ 
U 
Uc 
U~o 
v~ 
X 
X, 

Y 
Y. 

Greek 

AP 
At', 
0 
2 

lZ 
V 

H 

P 

q~ 

ambient temperature, K 
mean velocity, m/s 
core velocity, m/s 
free-stream velocity, m/s 
mean velocity through orifice, m/s 
screen parameter, Equation 14 
screen parameter, Equation 34 
screen parameter, Equation 23 
screen parameter, Equation 43 

symbols 

thermal diffusivity, m2/s 
coefficient of thermal expansion, K -  
dimensionless spacing, Equation 13 
dimensionless spacing, Equation 34 
total pressure drop, N/m z 
stack pressure drop, N/m 2 
dimensionless core temperature, Equation 33 
screen pressure loss coefficient 
viscosity, kg/s. m 
kinematic viscosity, m2/s 
pressure drop number, Equation 13 
density, kg/m 3 
average wall shear stress, N / m  z 
screen porosity 
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because of the pressure drops across the screens (the factor 2 
preceding K c accounts for the number of screens). Much 
experimental data on the contraction pressure loss coefficient 
K c are available already (Bernardi et al. 1976; Blevins 1992; 
Idelchik et al. 1986). The experiments showed that when the 
Reynolds number based on screen orifice size is of order 500 
or greater; Kc does not depend upon the Reynolds number and 
is only a function of the screen porosity tp, which is defined as 
the total cross-sectional area of all the orifices, divided by the 
frontal area of the screen. For example, Idelchik et al.'s K¢ 
correlation for a screen made of wire with square cross section, 
or plate with perforations with square (sharp) edges is as 
follows: 

K¢ = (1/~0)2[0.707(1 - tp) 1/2 + 1 - (piE (4) 

The Kc values calculated with Equation 4 agree within 10 
percent with the K c values tabulated for the same geometry by 
Blevins (1992). 

In electronic equipment cooling applications, the inlet air 
velocity is typically of order 1.5 m/s; whereas, the screen 
perforations (e.g., punched holes) have diameters of order 
0.5 cm. This means that Reynolds number based on hole 
diameter is of order 500, and we can regard K c as a function 
of only tp. Indeed, one important unknown in the design is the 
screen porosity ~o or, if the perforation size is given, the number 
of perforations per unit area. 

We also assume that the screen orifices (e.g., holes, slits) are 
sufficiently numerous and identical in size and are distributed 
uniformly over the screen so that they do not interfere with 
(i.e., do not cause flow maldistributions in) the grid of spacing 
D formed by the stack. The longitudinal velocity averaged over 
the cross-sectional area of one orifice (V~, see Figure l, detail) 
is related to the stack mean velocity U by the following mass 
conservation relation: 

= U / ~  (5) 

To summarize the behavior of the flow in the small D regime, 
we combine Equations 2, 3, and 5 into an implicit relation 
between the mean velocity through the stack U and the 
imposed pressure difference AP 

A P  = 12#(LU/D 2) + (Kc/tp2)pU 2 (6) 

In the same regime of sufficiently small spacings D, the outlet 
temperature of the coolant is equal to the temperature of the 
plates in the stack Tw. The total heat transfer from the stack 
to the coolant is q' = rh'ce(Tw - Too), where ~h' = n p  UD and 
n = H/D:  

q'smallO ----" pUHcp(T~  - To~) (7) 

At the end of this section, Equations 6 and 7 are combined 
numerically to eliminate U and express the overall thermal 
conductance q'/(Tw - T~o) as a function of the imposed AP and 
the design variable D. 

When the plate-to-plate spacing is large enough that each 
plate is lined by distinct boundary layers, the pressure drop 
across the stack is as follows: 

AP~ = 2L~/O (8) 

where g is the wall shear stress averaged over the plate length 
(e.g., Incropera and DeWitt 1990), 

= 0 .664pU2(UcL/v)  - ~/2 (9) 

The assumption that D is sufficiently large means that the order 
of magnitude of D is greater than the boundary-layer thickness 
scale, and Uc is the longitudinal velocity in the core of the D 
channel; i.e., outside the two boundary layers that sandwich 
the core. The pressure drop caused by the two screens is the 

same as the second term in Equation 3; in other words, 
Equation 3 applies in the large D regime as well. By combining 
Equations 3, 8, and 9, we obtain an implicit relation between 
the stack core velocity and the overall pressure difference 

A P  = 1.328(L/D)pUa~/2(v/L) t/2 + (Kc/tp2)pU 2 (10) 

The core velocity Uc is needed to evaluate the heat transfer 
through one boundary layer (e.g., Bejan 1993); namely, 
q'x = 0.664 k(Tw - To~) Pr 1/3 (UcL/v) 1/2, and total heat transfer 
from the stack, q' = 2nq' 1 or 

q'l,rgeO = 1.328k(T,~- To~XH/D)Pr  1/3 (UcL/v)  1/2 (11) 

where k is the fluid thermal conductivity. To summarize the 
large D analysis, the core velocity Ue can be eliminated 
numerically between Equations 10 and 11 to relate the overall 
thermal conductance q ' / (T  w - T~) to the variable spacing D and 
the fixed overall pressure difference AP. 

The third and final step in this analysis is the observation 
that the optimal spacing Dop t that maximizes q ' (T , , , -  To) is 
approximately the same as the D value where the small D and 
large D asymptotes intersect. The geometric reasons for this 
observation are given in Bejan and Sciubba (1992). We locate 
the D intersection by using the right-hand sides of Equations 
7 and 11 to write q'smanO = q'larg=O, and the resulting relation is 
as follows: 

UOopl/V = 1.328 p r -  2/a(UcL/v) 1/2 (12) 

In conclusion, the preceding analysis produced a system of 
three equations: namely, Equations 6, 10, and 12, all written for 
D = Dopt, to determine the three unknowns of the problem: 
Dop t, U, and Uc. This system can be solved numerically, by first 
introducing the following dimensionless notation: 

= (Dopt/L)FI 1/4, H = AP.L2/lt~t (13) 

x = (KJtp2)pr - 5/3, p = (UL/~x)FI- a/2 (14) 

If we use this notation, the problem reduces to solving the 
following system: 

12p/62 + x p  2 Pr 2/3 -- 1 (15) 

0 . 3 3 2 x 6 4 p  4 Pr 4/3 + 0.567 6 2 p  a = 1 (16) 

Equation 15 follows from Equation 6; whereas, Equation 16 
results from eliminating U c between Equations l0 and 12. 

The general numerical solution is presented in Figure 2 as 
the optimal 6 versus the x number: this accounts for the effect 
of screen porosity (through tp and Kc), the effect of screen 
geometry (through Kc: perforated versus woven screen, sharp 
versus rounded edges), and the effect of fluid type (through Pr). 
We see that when the screens are absent (x = 0) the optimal 
spacing parameter approaches 6 = 2.73. In the opposite limit 
(x >> 1), the optimal spacing approaches 6 = 1.32 x 1/4. It is 
worth noting that in both x limits, the 6(x) relation is 
independent of Pr: this feature is the result of including Pr in 
the definition of x, Equation 14. The Prandtl number has the 
peculiar effect that it shifts the minimum of the 6(x) curve; 
however, this is a minor effect in the Pr range 0.72-7. It was 
shown, based on a more accurate analysis in Bejan and Sciubba 
(1992), that the optimal spacing corresponds to a developing 
channel flow where the thermal boundary layers just meet at 
the exit; i.e., where L is the thermal entrance length. 

Along the top of Figures 2 and 3, we plotted the porosity 
that corresponds to the abscissa parameter x when the coolant 
is air (Pr = 0.72), and the screen is a plate with sharp-edge 
perforations. For the function K,(tp) we used the values 
tabulated by Blevins (1992). The important conclusion made 
visible in Figure 2 is that the optimal spacing increases when 
the screen becomes an increasingly more significant flow 
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obstruction. The upper abscissa shows that the effect of the 
screens on the selection of D begins to be felt when the porosity 
~0 drops below approximately 0.7. When screens with porosities 
greater than 0.7 are used, the optimal plate-to-plate spacing is 
the same as when the screens are absent. 

Figure 3 shows the flow-rate solution p(x), which 
accompanies the spacing solution f(x) discussed until now. The 
p parameter is a modified Peclet number based on L and the 
mean velocity through the plate-to-plate channel, Equation 14. 
The figure shows that the flow rate decreases as x increases; 
i.e., as the screens become less permeable. In the case of air, 
the screen effect becomes important when x increases above 
approximately 1. 

2.2 Stack wi th fixed plate-to-plate spacing 

Another way of evaluating the effect of the screens on the 
thermal performance of the stack is by considering an existing 
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stack (fixed D) that must be fitted with inlet and outlet screens. 
The new question is: how porous must the screens be so as not 
to decrease the thermal conductance between the stack and the 
coolant? 

Let us assume that the existing stack has been optimized 
according to the design rule developed for stacks without 
screens, 6 = 2.73. Recall that the optimal design rests at the 
transition between the Hagen-Poiseuille regime, Equation 6, 
and the boundary-layer regime, Equation 10. When screens are 
added to the front and back of the stack and the overall AP 
remains unchanged, the flow-rate decreases, and the flow in 
each D-wide channel is definitely in the Hagen-Poiseuille 
regime. The screen-stack-screen assembly is described fully by 
Equations 6 and 7, which can be combined to eliminate U, and 
nondimensionalized by using Equations 13 with 6 = 2.73: 

1.61[q'L/kH(T w - T~)FII/2] 

+ (Kc/tp 2 P r ) [ q ' L / k n ( T w -  TJI-III2] 2 = 1 (17) 

Equation 17 is plotted in Figure 4 to show the effect of the 
screens (x. = KJq92 Pr) on the overall thermal conductance. It 
is clear that the screens have a detrimental effect, and this effect 
becomes sizeable when the new abscissa parameter x. exceeds 
the range 1 - 10. In the case of air cooling, (Pr = 0.72) and 
screens with perforations with sharp edges (Blevins 1992), the 
screens induce a significant (greater than 20 percent) reduction 
in the overall thermal conductance if the porosity is smaller 
than 0.8. This critical porosity is comparable with the 
conclusion reached in the discussion of Figure 2. Note, further, 
that when ~0 is smaller than 0.8 in Figure 4, the overall thermal 
conductance decreases proportionally with ~0. 

2.3 Assembly cooled by a free stream 

In the analysis presented above, we assumed that the pressure 
difference across the assembly is fixed, for example, by a fan 
situated downstream of the assembly. The same analysis is 
applicable to an assembly cooled by a free stream with the 
upstream velocity U=, Figure 1. Note that the pressure 
difference maintained by such a stream is approximately 
AP ~ (1 /2 )pU~.  The results for such configurations are the 
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Figure 4 The e f fec t  o f  the  screens on the  overa l l  thermal  
c o n d u c t a n c e  w h e n  the  p l a t e - t o - p l a t e  spac ing  D is fixed, and the 
cooling is by forced convection (high-screen Reynolds numbers). 
The upper ~ scale refers to air cooling (Pr = 0 .72)  and screens made 
of plates with sharp-edged perforations 
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same as in Figures 2, 3, and 4, except that the pressure difference 
number H, Equation 13, is replaced everywhere by the 
following group: 

H == (1/2) Pr Re 2 (18) 

where Re L = U~ L/v. 

3. Forced convection: small screen Reynolds 
numbers 

The results presented in Sections 2.1-2.3 are based on the 
assumption that the screen Reynolds number is large enough 
that the screen pressure drop is proportional to the velocity 
squared, Equation 3. The screen pressure drop behaves quite 
differently in the limit of small screen Reynolds numbers, where 
it is proportional to the velocity (Cornell 1958; Bernardi et al. 
1976; Smetana 1963). In place of Equation 3, the total pressure 
drop is given by the following: 

AP = AP s + 22 # U ~ / d  (19) 

where 2 is the number of screens, U~ is the approach velocity, 
d is the length scale of the screen (e.g., the wire diameter in a 
square-mesh screen), and 2(~0) is a dimensionless coefficient 
depending only on screen porosity. Bernardi et al. showed that 
the following expression: 

2 = 599 exp(-7.01 ~0) (20) 

correlates within ± 5 percent pressure drop measurements with 
air and oil through square-mesh wire screens in the range 
0.3 _< q~ _< 0.61, and Re d < 10, where Re d = Uo~d/v is the screen 
Reynolds number. 

In Sections 3.1-3.3 we report only the results of the analysis 
analogous to Equations 1-18, in which the high-Re d pressure 
drop model (Eq. 3) was replaced by the low-Red model 
presented in Equations 19 and 20. The numbering of Sec. 
3.1-3.3 is intended to show the analogy with Sections 2.1-2.3, 
so that the omitted analytical steps can be retraced if needed. 

3.1 The optima/plate-to-plate spacing 

In place of Equations 15 and 16, the solution to the optimal 
spacing problem is obtained by solving the following system: 

12p/62 + 2y = 1 (21) 

1.134 y ~2 p2 prl/a + 0.567 ~2p3 = 1 (22) 

where y is the new dimensionless screen parameter for the small 
Re d limit: 

y = 2 ( L / d ) H -  1/2 (23) 

The solution is presented as f(y) and p(y) in Figure 5. The 
qualitative agreement between these curves and Figures 2 and 
5 is clear. Just as x in Figures 2 and 3, the new screen parameter 
y increases when the screen porosity decreases. In the same 
direction, the optimal board-to-board spacing ~ increases, and 
the velocity decreases. One new feature is that an optimal 
spacing exists only when the porosity is large enough that y is 
less than 0.5. 

3.2 Stack with fixed plate-to-plate spacing 

The effect of the screens on the total heat transfer rate is 
described by the following: 

[q 'L /k  H(Tw -- To0)rp/2] = 1/(1.61 + 2y) (24) 

Here, we assumed that the spacing is fixed, having been selected 

, /  / I ~ [ 0'' 
0.01 0.1 1 

y = z L I I  -p2 

Figure 5 The effect of the screens on the optimal spacing and the 
flow when the cooling is by forced convection (low-screen 
Reynolds numbers). The right side shows the screen effect when 
the spacing is fixed 

(optimized) when the screens were absent, 6 = 2.73. Equation 
24 is plotted in Figure 5 and shows that the total heat transfer 
rate decreases as y increases; i.e., as the screen porosity 
decreases. The relation between y and porosity is illustrated by 
the numerical example given in the next section. 

3.3 Assembly cooled by a free stream 

As shown in Section 2.3, when the approach velocity Uo~ is 
specified (instead of AP), Equations 21-24 continue to hold, 
provided 1-I is replaced by (1/2)PrRe 2, Equation 18. The 
screen parameter definition (Eq. 23) changes to the following: 

y ~- (2/Red)(2/Pr) ~/2 (25) 

For example, if Re L = 1000, Pr = 0.72, L = 10cm, and 
d = 1 mm, by using the correlation 20, we find that y covers the 
range between 120 and 14 when q~ varies between 0.3 and 0.61 
[as in Bernardi et al.'s (1976) correlation]. In this y range, the 
screens have a profound (detrimental) effect on the total heat 
transfer rate (cf. Equation 24). 

4. Natural  convection: large screen Reynolds 
numbers 

We now turn our attention to a series of analogous questions 
for designs where the parallel plates are vertical, and the cooling 
is by natural convection. As shown in Figure 6, most of the 
modeling features described in connection with Figure 1 are 
repeated, with the difference that the swept length of each plate 
now is the height H. The assembly is immersed in a quiescent 
fluid of temperature T, .  The number of parallel plates, 
n = L/D, is assumed to be considerably greater than 1. 

To preserve the symmetry of the work and results presented 
so far, and to minimize the space used, we begin with the 
assumption that the screen Reynolds number is high enough 
that the screen pressure drop is described by the last term in 
Equation (3). The low R% regime is documented in Section 5, 
because it is likely to occur in small-size packages cooled by 
natural convection. 

4.1 Optimal plate-to-plate spacing 

We follow the analytical steps outlined in Section 2.1 and seek 
to determine the effect of the screen on the plate-to-plate 

20 Int. J. Heat and Fluid Flow, Vol. 16, No. 1, February 1995 



H 

L 

Vc 

. . . .  . . . . .  

D 
¢ 

I 

. . . .  . . . .  

. . . .  + ~ m m .  

Core 

Te 

Tw 

V¢ 
T..._ T .  

Boundary 
Layer 

Figure 6 Natural convection cooling of a stack of parallel plates 
with inlet and outlet screens. Right side: distinct boundary layers 
and core temperatures in the large D limit 

spacing D that maximizes the stack-ambient thermal 
conductance q ' / ( T w -  Too). The stack without inlet and outlet 
screens has been optimized already (Anand et al. 1990, 1992; 
Bar-Cohen and Rohsenow 1984; Bejan 1984; Elenbaas 1942; 
Kim et al. 1992; Levy 1'971) and will be used as reference. 

In the small D limit, the channels of width D contain fluid at 
a temperature approaclhing the plate temperature T~. This 
means that the total pressure difference that drives the chimney 
flow is AP = pgHf l (Tw--  T~); i.e., the difference between the 
hydrostatic pressures at the bottom of two H-tall columns, one 
filled with T~-fluid and the other with Tw-fluid. The driving 
pressure difference AP is opposed by two flow resistances in 
series, the Hagen-Poiseuille flow resistance of the parallel 
plates, and the pressure drop due to the screens: 

p g H f l ( T ~ -  T ~ ) =  12/ t (HU/D 2) + 2K¢(1/2)pV 2 (26) 

where U is the mean velocity in the D channel. By using 
Equations 4 and 5, we rewrite Equation 18 as follows: 

p#Hfl(Tw - To~) = 12#(HU/D 2) + (K~/~p2)pU 2 (27) 

In the same small D limit, the total heat transfer from the stack 
to the chimney flow is as follows: (cf. Equation 7): 

q~mallO = pULc~(Tw -- To~) (28) 

Consider next the large D limit where the vertical plates are 
lined by distinct boundary layers. The core of each D-wide 
channel is inhabited by fluid of temperature T~, which generally 
is higher than the ambient temperature T~ because of the fluid 
trapping effect of the two screens. Only when the screens are 
absent does the core temperature T~ equal T~. With the screens 
in place, the pressure-driving effect is the difference between the 
hydrostatic pressures at the base of an H-tall column of 
T~-fluid and at the base of an adjacent H-tall column of 
T:fluid; namely, pgHfl(7~ - To~). This driving effect is balanced 
entirely by the pressure drop across the screens: 

pgHfl(T~ - To~)= 2K~(1/2)pV 2 (29) 

The total heat transfer in the large D limit is 2n times the 
heat transfer through one boundary layer, q'z = [~H(T~ - To~) 
where/~ = N--uk/H, and 1V--u = 0 . 5 1 7 [ g f l n a ( T w -  T~)/~tv]l/*; e.g., 
Bejan (1993): 

q',~,g=o = 1.034(L/D)k(Tw - T~)[g f ln3(Tw-  T~)/~tv] '/4 (30) 
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The analysis of the large D limit is completed by the first law 
argument that the heat transfer from the stack, Equation 30, 
must be balanced by the enthalpy picked up by the coolant as 
it rises through the assembly, rh'cp(T~- T~). The total mass 
flow rate through the stack is rh '=  pV~q)L, for which V~ is 
provided by Equation 29. In the end, this energy balance yields 
the following: 

1.034(L/D)k(Tw - T~)[gfln3(Tw - T~)/ctv] l / ,  

= p~oLce(T~-  Too)[gflH(T~- To~)/Kc] 1/2 (31) 

Finally, to locate the optimal plate-to-plate spacing that 
maximizes the thermal conductance q' / (T w - T o o )  we set 
q'smano = q'la*s*D using Equations 28 and 30. The resulting 
relation is as follows: 

UH/a  = 1.034 (H/Dop,)(1 -- 0) s/4 Ra~/* (32) 

where 

0 = ( T ~ -  T = ) / ( T w -  T~), Rail = g # n a ( T w -  T~o)/atv (33) 

The dimensionless core temperature 0 varies between 0 and 1. 
To summarize, the natural convection problem reduces to 

solving Equations 27, 31, and 32 for three unknowns: Dopt, 0, 
and U. The numerical work of determining and displaying the 
solution is aided considerably by the use of the dimensionless 
groups: 

6 ,  = (Dovt/n) Ra~/4, x ,  = Kc/q92 Pr, (34) 

p ,  = (UH/a)  Ra~ 1 / 2 ,  

so that the optimal spacing is described by the constant 
6, = 2.32 in the design without screens (x,  = 0). Equations 27, 
31, and 32 become, respectively, as follows: 

12p,/62 + x,p2,  = 1 (35) 

1.034(1 -- 0)5/4/03/2 = 6 ,/xl,/2 (36) 

p , 6 ,  = 1.034(1 -- 0) 5/4 (37) 

Figure 7 shows the 6,(x,)  relation prescribed by Equations 
35-37. The optimal spacing decreases as the abscissa parameter 
increases; i.e., as the screens pose an increasing flow resistance. 
The decrease in 6 ,  vs. x ,  is interesting because it runs against 
the trend exhibited by the corresponding result for forced 
convection [see the curve 6(x) in Figure 2]. Interesting also are 
the similarities between Figures 7 and 2, specifically, the nearly 
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Figure 7 The o p t i m a l  p l a t e - t o - p l a t e  s p a c i n g  a s  a f u n c t i o n  o f  the 
screen characteristics when the stack is cooled by natural 
convection (high-screen Reynolds numbers). The upper tp scale 
refers to air cooling (Pr = 0.72) and screens made of plates with 
sharp-edged perforations 
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Figure 8 The screen effect on the f low through the stack and the 
core temperature during cool ing by natural convect ion (high-screen 
Reynolds numbers). The upper tp scale refers to air cool ing 
(P r=O .72 )  and screens made of plates wi th sharp-edged 
perforations 

the same abscissa parameters, and the fact that the effect of the 
screens becomes important when the abscissa parameter 
exceeds a critical order of magnitude. In Figure 7, the knee of 
the 6,(x,) curve is located in the vicinity of x ,  ~ 1, which in 
the case of air cooling and plate screens with sharp-edged 
perforations, means that the screen effect becomes important 
when the porosity falls below approximately 0.8. 

Equations 35-37 also yield the functions p,  (x,) and O(x,), 
which are displayed in Figure 8. The modified Peclet number 
p,  decreases as x ,  increases, which means that the flow slows 
as the screen porosity decreases. The dimensionless core 
temperature 0 approaches 1 as x ,  increases. This trend is 
expected, because the channel fluid becomes trapped as the 
screen openings close, and, as a result, the core temperature T~ 
approaches the plate temperature Tw. 

4.2 Stack with fixed plate-to-plate spacing 

Now consider the design in which the stack is given (D is fixed), 
and the screen porosity must be chosen so that the 
stack-ambient thermal conductance does not deteriorate. As in 
Section 2.2, we assume that the given stack spacing has been 
optimized based upon the rule valid for stacks without screens, 
namely 6, = 2.32 or D = 2.32 H Ra~ 1/4. Without screens, the 
flow in each D-wide channel is at the transition between 
Hagen-Poiseuille flow and boundary layer flow. 

When screens are fitted to the bottom and top of the stack, 
the flow rate is smaller than when the screens are absent, and 
the flow in each parallel plate channel is definitely of the 
Hagen-Poiseuille type. The thermal performance of the stack 
is described by Equations 27 and 28, which can be combined 
by eliminating U: 

2.23q'H/kL(Tw- T~)Ra~/2 

+ (KUq92 ar)[q'H/kL(Tw- To~)Ra~/2] 2 = 1 (38) 

This equation describes the general effect of the screen 
(x, = KJq~ 2 Pr) on the overall thermal conductance; the 
latter has been nondimensionalized as the group shown 
inside the second set of square brackets. Equation 38 has the 
same form as Equation 17: this means that, graphically, 
Equation 38 will look almost the same as the curve shown in 

Figure 4, except that the new group on the ordinate will be 
q'H/kL(T~- T~)Ra~/2. 

In conclusion, the effect of the horizontal screens is to 
decrease the stack-ambient thermal conductance as the screen 
porosity decreases below a critical order of magnitude. As 
indicated in the discussion of Figure 4, when the coolant is air, 
and the perforated plates have porosities smaller than 
approximately 0.8, installation of two screens induces a 
significant decrease in the overall thermal conductance of the 
package. 

5. Natural  convect ion:  small screen Reynolds 
numbers 

5.1 Opt ima/plate- to-plate spacing 

The screen pressure drop behaves as shown in the second term 
on the right side of Equation 19. To obtain optimal 
plate-to-plate spacing, we repeated the analysis shown in 
Section 4.1, by starting with the following: 

pgHfl(Tw - T~) = 12# (HU/D 2) + 22#U/d (39) 

in place of Equation 26. The problem reduces to solving the 
following system: 

12(p,/62,) + 2y, p, = 1 (40) 

1.034(1 - 0)s/4/02 = 6,/2y, (41) 

p,6,  = 1.034(1 -- 0) 5/4 (42) 

where 6, and p,  are defined by Equations 34, and y,  is the 
new, dimensionless screen parameter 

y,  = 2(H/d) Ra~ x/2 (43) 

The results for the optimal spacing 6,(y,), velocity p,(y,), 
and core temperature O(y,) are presented in Figure 9. The 
trends of these curves are the same as those in Figures 6 and 
7 for higher-screen Reynolds numbers. The main difference is 
the definition of the dimensionless screen parameter; namely, 
y,  of Equation 43 in place of x ,  of Equation 34. 

5.2 Stack with fixed plate-to-plate spacing 

The effect of adding screens to a vertical stack with optimized 
and fixed spacing is described by the following: 

[q'H/kL(Tw - T~)Ra~/2] = 1/(0.97 + 2y,) (44) 

The total heat transfer rate is sensitive to changes in the 
screen parameter. Consider the following numerical example. 

~-_ - . . . . .  i,, __.j_-~- ~ . . . . . .  _ . ~  

o o ,  -.- 
0.01 0.1 1 10 

y. = xHl~alt ~a 

Figure 9 The effect of the screens as the optimal spacing, f low, 
and core temperature during cool ing by natural convect ion 
( low-screen Reynolds numbers) 
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A vertical stack with H = 10 cm, d = 1 mm, and (Tw - T~) ~ 
75K in air is characterized by Ra n ~ 5 x 106. According to 
Equations 20 and 43, y .  covers the range 0 . 4 -  3.3 as ~0 
decreases from 0.61 to 0.3. Equation 44 shows that, in this 
range, the total heat transfer rate drops to between 1/2 and 1/10 
of its value when the sc~reens are absent. 

6. C o n c l u d i n g  remarks 

In this paper, we considered the fundamental heat transfer 
problem of how to cool a stack of heat-generating boards that 
are surrounded by electromagnetic screens. We pursued this 
question by solving four distinct problems, which are all 
new: 

(1) forced convection and screened stack with board-to-board 
spacing that must be selected to minimize the overall 
thermal resistance between stack and coolant; 

(2) forced convection artd screened stack with fixed board-to- 
board spacing; 

(3) natural convection and vertical screened stack with 
board-to-board spacing that must be selected to minimize 
the overall thermal resistance; and 

(4) natural convection and vertical screened stack with fixed 
board-to-board spacing. 

The recommendations made for designs 1 and 2 have been 
extended to designs where the screened stack is cooled by 
immersion in a free stream (Section 2.3). We show that it is 
possible to condense the: description of the effect of the screen 
characteristics by using the following dimensionless groups: x 
for forced convection at high R%; x ,  for forced convection at 
low Rep; y for natural convection at high Rep; and y .  for 
natural convection at low Rep. This description is very powerful 
because it makes the present results applicable to screens of 
several geometries, each geometry being characterized by its 
own Kc(~0 ) or 2(tp) function. Numerical examples show how 
the present results can be used in applications with air cooling 
and screens made of plates with sharp-edged perforations, and 
wire meshes. 

We end with two observations about the method employed 
in this study. First, in the analytical method of intersecting the 
asymptotic solutions for small D and large D (Sections 2.1, 3.1, 
4.1, and 5.1), we treated each plate as isothermal at the 
temperature T w. For  stacks of printed circuit boards, a more 
appropriate boundary condition is uniform heat flux, or 
distributed heat flux (dJlscrete heat sources). The isothermal 
plate model is very good, for the purpose of determining the 
optimal spacing accurately. Bejan and Sciubba (1992) used an 
accurate analysis to demonstrate that the switch from constant 
temperature to constant flux surface conditions has practically 
no effect on the optimal spacing. Morega and Bejan (1994) 
performed complete numerical simulations of packages with 
discrete (flush mounted and protruding) heat sources and found 
that the optimal spacing determined numerically is anticipated 
very well by the intersection of asymptotes method. 

Second, we chose to conduct this study analytically because 
the intersection of asymptotes method has been tested 
extensively. The empirical porous screen information collected 
from handbooks is also highly reliable: it is used routinely for 
design purposes in the electronic cooling industry. In natural 
convection, there is excellent agreement between the intersec- 
tion of asymptotes result,,; (Bejan, 1984), and accurate analytical 
results (Bar-Cohen and Rohsenow, 1984) and the results of 
complete numerical simulations (Anand, et al., 1990, 1992). In 
forced convection, the excellent agreement between the 
intersection of asymptotes method and accurate analysis of 

Cooling of stacks of plates shielded by porous screens: A. Bejan et al. 

entrance-type flow (of the type used by Bar-Cohen and 
Rohsenow 1984) was documented by Bejan and Sciubba (1992). 
On the experimental side, Morega et al. (1995) found excellent 
agreement between the results of the intersection of asymptotes 
method and the optimal spacings determined experimentally 
by Hirata et ai. (1970), Nakayama et al. (1988) and Matsushima 
et al. (1992). 

The present study was one of thermal design optimization, 
where we used tested methods for the purpose of generating 
fundamental results for several classes of thermal design 
problems. Indeed, one contribution of this study was to 
introduce the intersection o f  asymptotes method to thermal 
designers who otherwise might conduct extensive (and 
expensive) numerical simulations of the flow and heat transfer 
in large numbers of different package geometries. 
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